afros-st.ru

Электроотрицательность атомов увеличивается в ряду

Таблица электроотрицательности химических элементов

Что такое электроотрицательность

Свойство атома химического элемента притягивать к себе электроны других атомов называется электроотрицательностью. Впервые понятие ввёл Лайнус Полинг в первой половине ХХ века.

Все активные простые вещества можно разделить на две группы в соответствии с физическими и химическими свойствами:

Все металлы являются восстановителями. В реакциях они отдают электроны и обладают положительной степенью окисления. Неметаллы могут проявлять свойства восстановителей и окислителей в зависимости от значения электроотрицательности. Чем выше электроотрицательность, тем сильнее свойства окислителя.

Рис. 1. Действия окислителя и восстановителя в реакциях.

Полинг составил шкалу электроотрицательности. В соответствии со шкалой Полинга наибольшей электроотрицательностью обладает фтор (4), наименьшей – франций (0,7). Это значит, что фтор является самым сильным окислителем и способен притягивать электроны большинства элементов. Напротив, франций, как и другие металлы, является восстановителем. Он стремится отдать, а не принять электроны.

Электроотрицательность является одним из главных факторов, определяющих тип и свойства образованной между атомами химической связи.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства – слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Рис. 3. Таблица Менделеева.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными – франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Закономерности изменения электроотрицательности элементов в группе и периоде

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке вы узнаете о закономерностях изменения электроотрицательности элементов в группе и периоде. На нём вы рассмотрите, от чего зависит электроотрицательность химических элементов. На примере элементов второго периода изучите закономерности изменения электроотрицательности элемента.

Тема: Химическая связь. Электролитическая диссоциация

Урок: Закономерности изменений электроотрицательности химических элементов в группе и периоде

1. Закономерности изменений значений электроотрицательности в периоде

Закономерности изменений значений относительной электроотрицательности в периоде

Рассмотрим на примере элементов второго периода, закономерности изменений значений их относительной электроотрицательности. Рис.1.

Рис. 1. Закономерности изменений значений электроотрицательности элементов 2 периода

Относительная электроотрицательность химического элемента зависит от заряда ядра и от радиуса атома. Во втором периоде находятся элементы: Li, Be, B, C, N, O, F, Ne. От лития до фтора увеличивается заряд ядра и количество внешних электронов. Число электронных слоев остается неизменным. Значит, сила притяжения внешних электронов к ядру будет возрастать, и атом будет как бы сжиматься. Радиус атома от лития до фтора будет уменьшаться. Чем меньше радиус атома, тем сильнее внешние электроны притягиваются к ядру, а значит больше значение относительной электроотрицательности.

Читать еще:  Как сушить вешенки в домашних условиях

В периоде с увеличением заряда ядра радиус атома уменьшается, а значение относительной электроотрицательности увеличивается.

Рис. 2. Закономерности изменений значений электроотрицательности элементов VII-A группы.

2. Закономерности изменений значений электроотрицательности в группе

Закономерности изменений значений относительной электроотрицательности в главных подгруппах

Рассмотрим закономерности изменений значений относительной электроотрицательности в главных подгруппах на примере элементов VII-A группы. Рис.2. В седьмой группе главной подгруппе расположены галогены: F, Cl, Br, I, At. На внешнем электроном слое у этих элементов одинаковое число электронов – 7. С возрастанием заряда ядра атома при переходе от периода к периоду, увеличивается число электронных слоев, а значит, увеличивается атомный радиус. Чем меньше радиус атома, тем больше значение электроотрицательности.

В главной подгруппе с увеличением заряда ядра атома радиус атома увеличивается, а значение относительной электроотрицательности уменьшается.

Так как химический элемент фтор расположен в правом верхнем углу Периодической системы Д.И.Менделеева его значение относительной электроотрицательности будет максимальным и численно равным 4.

Вывод: Относительная электроотрицательность увеличивается с уменьшением радиуса атома.

В периодах с увеличением заряда ядра атома электроотрицательность увеличивается.

В главных подгруппах с увеличением заряда ядра атома относительная электроотрицательность химического элемента уменьшается. Самый электроотрицательный химический элемент – это фтор, так как он расположен в правом верхнем углу Периодической системы Д.И.Менделеева.

Подведение итога урока

На этом уроке вы узнали о закономерностях изменения электроотрицательности элементов в группе и периоде. На нём вы рассмотрели, от чего зависит электроотрицательность химических элементов. На примере элементов второго периода изучили закономерности изменения электроотрицательности элемента.

Список рекомендованной литературы

1. Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2011 г.176с.:ил.

2. Попель П.П.Химия:8 кл.: учебник для общеобразовательных учебных заведений/П.П. Попель, Л.С.Кривля. -К.: ИЦ «Академия»,2008.-240 с.: ил.

3. Габриелян О.С. Химия. 9 класс. Учебник. Издательство: Дрофа.:2001. 224с .

Рекомендованные ссылки на ресурсы интернет

Рекомендованное домашнее задание

1. №№ 1,2,5 (с.145) Рудзитис Г.Е. Неорганическая и органическая химия. 8 класс: учебник для общеобразовательных учреждений: базовый уровень/ Г. Е. Рудзитис, Ф.Г. Фельдман. М.: Просвещение. 2011 г.176с.:ил.

2. Приведите примеры веществ с ковалентной неполярной связью и ионной. Какое значение имеет электроотрицательность в образовании таких соединений?

3. Расположите в ряд по возрастанию электроотрицательности элементы второй группы главной подгруппы.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Задание №2 ЕГЭ по химии

Автор: Руслан Давыдов | Сайт: ege-rep.ru/blog/

Дмитрий Иванович Менделеев открыл периодический закон, согласно которому свойства элементов и образуемых ими изменяются периодически. Данное открытие было графически отображено в таблице Менделеева. По таблице очень хорошо и наглядно видно, как свойства элементов изменяются по периоду, после чего повторяются в следующем периоде.

Для решения задания №2 ЕГЭ по химии нам всего лишь нужно понять и запомнить, какие свойства элементов в каких направлениях изменяются и как.

Всё это отображено на рисунке ниже.

Слева направо растут электроотрицательность, неметаллические свойства, высшие степени окисления и т.д. А металлические свойства и радиусы уменьшаются.

Сверху вниз наоборот: растут металлические свойства и радиусы атомов, а электроотрицательность падает. Высшая степень окисления, соответствующая количеству электронов на внешнем энергетическом уровне, в этом направлении не меняется.

Разберём на примерах.

Пример 1. В ряду элементов Na→Mg→Al→Si
А) уменьшаются радиусы атомов;
Б) уменьшается число протонов в ядрах атомов;
В) увеличивается число электронных слоёв в атомах;
Г) уменьшается высшая степень окисления атомов;

Если посмотреть в таблицу Менделеева, то мы увидим, что все элементы данного ряда находятся в одном периоде и перечислены в том порядке, как они стоят в таблице с лева направо. Что бы ответить на вопрос такого рода нужно просто знать несколько закономерностей изменений свойств в периодической таблице. Так слева направо по периоду металлические свойства падают, неметаллические растут, электроотрицательность растёт, энергия ионизации растёт, радиус атомов уменьшается. По группе сверху вниз металлические и восстановительные свойства растут, электроотрицательность падает, энергия ионизации уменьшается, радиус атомов растёт.

Читать еще:  Как разводить мучных червей в домашних условиях

Если вы были внимательны, то уже поняли, что в данном случае уменьшаются радиусы атомов. Ответ А.

Пример 2. В порядке усиления окислительных свойств элементы расположены в ряду:
А. F→O→N
Б. I→Br→Cl
В. Cl→S→P
Г. F→Cl→Br

Как вы знаете, в периодической таблице Менделеева окислительные свойства растут слева направо по периоду и снизу вверх по группе. В варианте Б как раз приведены элементы одной группы в порядке снизу вверх. Значит Б подходит.

Пример 3. Валентность элементов в высшем оксиде увеличивается в ряду:
А. Cl→Br→I
Б. Cs→K→Li
В. Cl→S→P
Г. Al→C→N

В высших оксидах элементы проявляют свою высшую степень окисления, которая будет совпадать с валентностью. А высшая степень окисления растёт слева направо по таблице. Смотрим: в первом и втором вариантах нам даны элементы, находящиеся в одних группах, там высшая степень окисления и соответственно валентность в оксидах не меняется. Cl→S→P – расположены справа налево, то есть у них наоборот валентность в высшем оксиде будет падать. А вот в ряду Al→C→N элементы расположены слева – направо, валентность в высшем оксиде увеличивается у них. Ответ: Г

Пример 4. В ряду элементов S→Se→Te
А) увеличивается кислотность водородных соединений;
Б) увеличивается высшая степень окисления элементов;
В) увеличивается валентность элементов в водородных соединениях;
Г) уменьшается число электронов на внешнем уровне;

Сразу смотрим на расположение этих элементов в таблице Менделеева. Сера, селен и теллур находятся в одной группе, одной подгруппе. Приведены в порядке сверху вниз. Смотрим еще раз на диаграмму выше. Сверху вниз в периодической таблице растут металлические свойства, растут радиусы, падает электроотрицательность, энергия ионизации и неметаллические свойства, количество электронов на внешнем уровне не меняется. Вариант Г сразу исключаем. Если число внешних электронов не меняется, то валентные возможности и высшая степень окисления тоже не меняется, Б и В – исключаем.

Остаётся вариант А. Проверяем для порядка. По схеме Косселя сила безкислородных кислот возрастает с уменьшением степени окисления элемента и увеличением радиуса его иона. Степень окисления у всех трёх элементов одинаковая в водородных соединениях, а вот радиус сверху вниз растёт, значит и сила кислот растёт.
Ответ – А.

Основные свойства оксидов ослабевают синхронно с ослабление металлических свойств элементов их образующих. А Ме- свойства ослабевают слева направо или снизу вверх. Na, Mg и Al как раз располагаются слева направо. Ответ Б.

Электроотрицательность

Между атомами в молекуле образуется определенная химическая связь, которую в современном научном мире описывает квантовая механика. Заряженные частицы в атоме взаимодействуют между собой, обеспечивая молекуле определенную устойчивость.

В зависимости от расстояния между атомами, полярности и прочности, химическая связь между атомами может быть:

  • ковалентная полярная,
  • ковалентная неполярная,
  • ионная,
  • металлическая.

В 1932 году ученый-химик американского происхождения Лайнус Карл Поллинг ввел термин электроотрицательность. С помощью термохимических данных он определил, что энергия гетероядерной связи практически всегда больше, чем энергия гомоядерной связи.

Электроотрицательность — это способность атома в молекуле смещать к себе общие электронные пары. Она является необходимым показателем для описания молекулярных систем, определения типа связей в молекуле, распределения ионного заряда между взаимодействующими элементами. К факторам, которые влияют на эту величину, относятся: валентное состояние атома, степень окисления, координационное число и другие.

Читать еще:  Скважина в частном доме своими руками

Приняв значение электроотрицательности водорода равной 2.1 произвольно и используя известные термодинамические данные, сравнивая электроотрицательность элементов с водородом, Поллинг составил первую шкалу относительных атомных электроотрицательностей.

Необходимо помнить, что электроотрицательность — величина не постоянная, а относительная, и позволяет лишь определить, в сторону какого элемента сдвигается общая электронная пара.

Помимо шкалы Поллинга, что изучают в школьном курсе химии, и которую можно найти на странице 276 учебника «Химия 8 класс» под редакцией В.В.Еремина, в мире существует около двадцати шкал определения электроотрицательности.

    Шкала Малликена. Она учитывает энергию, необходимую для превращения атома в ион или энергию ионизации, и количество энергии, выделяющееся при соединении электрона с атомом, или сродство к электрону.

  • Шкала Олреда-Рохова. Построена с учетом силы электростатического взаимодействия, которая действует на электрон на наружном энергетическом уровне.
  • Таблица электроотрицательности Поллинга — справочный материал, и не всегда есть под рукой. Однако существуют общие закономерности электроотрицательности, и, зная расположение элемента в Периодической системе Д.И.Менделеева, можно косвенно оценить, в сторону какого из элементов в молекуле будет сдвигаться общая электронная пара.

    Электроотрицательность химических элементов, расположенных правее, больше, чем у элементов, расположенных левее в одном периоде. Электроотрицательность элементов, расположенных выше, больше, чем у элементов, расположенных ниже в одной группе. Исходя из этих данных, самый высокий показатель у элементов, расположенных в правом верхнем углу, и самый низкий у элементов внизу слева.

    По этим данным был составлен ряд электроотрицательности, в котором химические элементы расположены в порядке убывания ее величины: F, O, N, Cl, Br, S, C, P, H, Si, Mg, Li, Na.

    Если таблица Поллинга под рукой, с помощью несложных арифметических действий можно определить тип связи в молекуле. Для этого нужно найти относительную электроотрицательность атомов, входящих в молекулу по таблице, и из большего значения вычесть меньшее, а по результату оценить связь.

    Разность значений равна 0,5 или меньше — сила притяжения у атомов практически равна, электронное облако находится примерно посередине расстояния между атомами веществ, а связь является ковалентной неполярной. Если молекула состоит из двух одинаковых атомов, то разность значений электроотрицательностей равна 0. Атомы в молекуле с ковалентной полярной связью прочно соединены.

    Разность значений составляет от 0,5 до 1,6 — сила притяжения у одного из атомов значительно больше, и он смещает общую электронную пару к себе, приобретая таким образом частичный отрицательный заряд. Атом, от которого общая электронная пара на более далеком расстоянии, приобретает частичный положительный заряд. Между атомами возникает ковалентная полярная связь. Сдвиг общей электронной пары приводит к определенному дисбалансу и молекула может вступать в определенные химические превращения.

    Разность значений равна 2,0 и выше. В этом случае общая пара электронов достанется атому, чья электроотрицательность больше. Заряд у такого атома становится отрицательным, а у другого атома в молекуле за счет потери электрона — положительным. Между атомами возникает ионная связь. Ионная связь нестойкая, и молекулы легко вступают в реакции с другими атомами и полярными молекулами.

    Разность значений составляет от 1,6 до 2,0. Самый сложный для определения тип связи, поскольку зависит от входящих в состав молекулы атомов. Если в молекулу входит атом металла, то связь ионная. Если в молекуле атомы металла отсутствуют — связь ковалентная полярная.

    Ссылка на основную публикацию
    Adblock
    detector
    \n
    <\/div>\n \n ","snd":"","res_of":"∞","res_to":"∞"}]},{"how":{"onсe":{"direction":"top_to_bottom","before_after":"after","N":"2","selector":"h2","search_all":"false"}},"ID":"302","html":[{"fst":"","snd":"","res_of":"∞","res_to":"∞"}]},{"how":{"onсe":{"direction":"top_to_bottom","before_after":"after","N":"3","selector":"h2","search_all":"false"}},"ID":"303","html":[{"fst":"","snd":"","res_of":"∞","res_to":"∞"}]},{"how":{"onсe":{"direction":"top_to_bottom","before_after":"after","N":"4","selector":"h2","search_all":"false"}},"ID":"304","html":[{"fst":"
    <\/div>\n
    Для любых предложений по сайту: [email protected]